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Abstract. This work is an application of the second order gauge theory for the Lorentz group, where a de-
scription of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze
the form of the second field strength, G = ∂F +fAF , in terms of geometrical variables. All possible in-
dependent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are
analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky’s term of
his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation
was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance
modification.

PACS. 11.15.-q; 11.30.Cp; 04.20.Cv; 04.50.+h

1 Introduction

Nowadays there are many proposals to modify gravitation
in order to solve several problems, as the present day accel-
erated expansion of the universe [1–6], or to accommodate
corrections of a quantum nature that arise from the clas-
sical effective backreaction of quantum matter in a curved
background [7–10]. The effective action is widely used in
quantum field theory as a powerful method of calculation.
Podolsky generalized electrodynamics, for instance, can be
viewed as an effective description of the quantum correc-
tion to the classical Maxwell Lagrangian [11–13].
For gravitation, usually higher orders terms are intro-

duced by means of Lagrangian contributions quadratic in
the Riemann tensor and their contractions [14, 15]. This is
inspired by one-loop corrections in the Einstein–Hilbert ac-
tion in the quantized weak field approximation, or in the
equivalent Feynman construction of a spin-2 field on a flat
Minkowski background [16]. Besides this, at the quantum
level, the S matrix for the Einstein theory is finite at one-
loop level but diverges at the two-loop order [17], which
motivates the introduction of derivative terms in the Rie-
mann tensor for the action [18, 19].
On the other hand, recently was proposed a second

order construction of gauge theories based on Utiyama’s
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approach [20], which gives exactly the same correction
terms as in Podolsky’s electrodynamics, but now arising
from the principle of local gauge invariance [21]. There-
fore, a connection between quantum corrections and higher
order gauge terms in the action was conjectured, which was
proved be fulfilled also for the effective Alekseev–Arbuzov–
Baikov Lagrangian of the infrared regime of QCD [22].
Here, we analyze the gauge formulation of the gravi-

tational field based on the framework of the second order
gauge theory. The simplest gauge group is given by the
Lorentz homogeneous group in the context of a Rieman-
nian description of the gravitational field. Since the gauge
field is given in such a case by the local spin connection,
a higher order in the gauge field naturally involves the
derivative of the curvature tensor. In this sense, the ac-
tual higher order gravitational Lagrangian should be con-
structed from invariants using the covariant derivative of
the Riemann tensor instead of the usual quadratic terms in
the curvature.
The relationship between the algebraic gauge descrip-

tion and the geometrical one is settled by means of the
introduction of the tetrad field, and the construction of
the covariant derivatives associated with both symmetries:
local Lorentz and global diffeomorphic coordinate trans-
formations. We use Latin indexes, a, b, . . . , for the internal
Lorentz group and Greek indexes for the tangent space of
the space-time manifold.
The paper is structured as follows. In Sect. 2 we re-

view some results relating gauge invariance and gravita-
tion. The field strengths F andG of the second order treat-
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ment are introduced in Sect. 3, where they are also written
in their geometrical counterparts: the Riemann curvature
tensor and its covariant derivative.
Section 4 deals with the possible quadratic invariants

of the type F 2 and G2. All the possible contractions are
studied and only the independent invariants are kept. This
counting is made in the same spirit as the systematic selec-
tion of the independent Riemann monomials done in [23,
24]. In the following section, Sect. 5, these invariants are
shown to satisfy the identity which restricts the theories
that may be called of gauge type.
Among all invariants, we select LP =

1
2hδ

ρRρχδµR
µχ,

the Podolsky-like Lagrangian, for calculating the equation
of motion of the gravitational field. This higher order grav-
ity application is done in Sect. 6. For this Lagrangian, we
calculate the static isotropic solution in the linear regime
at Sect. 6.2, finding the regular Newtonian potential at
short scales, but with a modified potential at intermediary
scales.
Final remarks are given in Sect. 7.

2 Gauge interaction and covariance

In 1956 Utiyama [20] has shown how to implement a gauge
description for the gravitational interaction with matter
fields QA(x) transforming according to

δQA(x) =
1

2
εab(x)(Σab)

A
BQ

B , (1)

as an implementation of the local invariance exigency of
the action under continuous proper Lorentz transform-
ations, which are characterized by the generators Σab sat-
isfying the operation of a typical Lie group,

[Σab, Σcd] =
1

2
fefab,cdΣef , (2)

where the

fefab,cd =
{[
ηbcδ

e
a−ηacδ

e
b

]
δfd −

[
ηbdδ

e
a−ηadδ

e
b

]
δfc
}
− e↔ f

are the structure constants, obeying the Jacobi identity.
εab =−εba are the parameters of the local transformation.
The capital Latin indexes are for the components of the
matter field.
It was clearly shown that one needs to introduce the

compensating field ωabµ (x) transforming as a connection,

δωefµ =
1

4
εab(x)fefab,cdω

cd
µ +∂µε

ef (x) . (3)

To ensure the covariance under coordinate transform-
ations it was necessary to define a space-time connection
whose behavior under infinitesimal diffeomorphisms is

δ̄Γ νµα =
∂δxν

∂xλ
Γλµα−

∂δxλ

∂xµ
Γ νλα−

∂δxλ

∂xα
Γ νµλ−

∂2δxν

∂xµ∂xα
.

The invariance of the theory implies that the com-
pensating field must appear through the gauge covariant
derivative

DµQ
A ≡ ∂µQ

A−
1

2
ωabµ (Σab)

A
BQ

B , (4)

i.e.,

δDµQ
A =
1

2
εab(Σab)

A
BDµQ

B , (5)

and the space-time connection must appear through the
space-time covariant derivative,

δµQ
λν ≡ ∂µQ

λν +ΓλµβQ
βν +Γ νµαQ

λα , (6)

and the total covariant derivative:

∇µQ
iν = ∂µQ

iν −ωibµ ηbkQ
kν +Γ νµαQ

iα . (7)

This total derivative must commute with the mapping to
the tangent space of the manifold,1

Qiµ ≡ hµj Q
ij , Qij = hjνQ

iν , (8)

∇µQ
iν ≡ hνj ∇µQ

ij , (9)

where we have introduced the tetrad field h:

hjνh
µ
j = δ

µ
ν , hiνh

ν
j = δ

i
j ,

gµν = ηijh
i
νh
j
µ , ηij = h

µ
i h
ν
j gµν ,

h=
√
dethjµ =

√
−g .

The definition (9) implies the absolute parallelism of the
tetrad:

∇µh
j
α ≡ 0 , (10)

which can be solved for the compensating field,

ωjiµ ≡ h
α
i

(
δµh

j
α

)

or for the space-time connection,

Γ νµα ≡ h
ν
j

(
Dµh

j
α

)
. (11)

We will restrict our analysis to a symmetric space-time
connection in order to approach the Riemannian descrip-
tion. The extension to the Riemann–Cartan case is quite
natural, but it would imply different types of invariants as
admissible Lagrangians (see discussion below).

3 Gauge field Lagrangian

The basic hypothesis we will assume is that the La-
grangian for the free gauge potential depends on the

1 Note that the action of the total derivative on a tangent
space field is defined by ∇µQ

i ≡DµQ
i.
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field, its first and second order derivatives and L0 =
L0(ω

ef
µ , ∂νω

ef
µ , ∂ρ∂νω

ef
µ ) obeys local invariance under (3).

This enables us to use the results presented elsewhere [21]
to construct a gauge formulation for higher order gravita-
tion theories.

3.1 The field strengths

According to [21], we can re-express

δL0 =
1

2

∂L0

∂ωefµ
δωefµ +

1

2

∂L0

∂
(
∂νω

ef
µ

)δ∂νωefµ

+
1

2

∂L0

∂
(
∂ρ∂νω

ef
µ

)δ∂ρ∂νωefµ

≡ 0 ,

splitting it into a set of four hierarchical equations after
substituting (3) and claiming the independence of the pa-
rameters εab and their derivatives. Three of these func-
tional equations are used to conclude that

L0 = L0(F,G);
∂L0

∂ωabµ
≡ 0 , (12)

where

F abµν = ∂µω
ab
ν −∂νω

ab
µ −ηcdω

ac
µ ω

db
ν +ηcdω

ac
ν ω

db
µ (13)

and

Gabβρσ =DβF
ab
ρσ = ∂βF

ab
ρσ −ηfdω

af
β F

db
ρσ+ηfdω

af
β F

bd
ρσ . (14)

The remaining hierarchical equation put in terms of the
gauge fields F and G,

∂L0

∂F adρσ
fadbc,ghF

gh
ρσ +

∂L0

∂Gadβρσ
fadbc,ghG

gh
βρσ ≡ 0 , (15)

imposes restrictions upon the functional form eventually
chosen for L0. Substituting the structure constants, this
condition can be explicitly written as

∂L0

∂F adρσ

[
ηcgδ

a
b −ηbgδ

a
c

]
F gdρσ

+
∂L0

∂Gadβρσ

[
ηcgδ

a
b −ηbgδ

a
c

]
Ggdβρσ ≡ 0 . (16)

3.2 Geometrical variables

In this section we will show how to interpret all objects and
conditions of the previous sections in terms of a geometri-
cal point of view. From (10) we read

ωegσ = η
gchαc
(
∂σh

e
α−Γ

ν
σαh

e
ν

)

and therefore the field strength F is written as

F egβσ = η
gchαc h

e
γ

[
∂σΓ

γ
βα−∂βΓ

γ
σα+Γ

ν
βαΓ

γ
σν −Γ

ν
σαΓ

γ
βν

]
,

wherewerecognizetheexpressionoftheRiemanntensor [26],

Rγσβα ≡ ∂σΓ
γ
βα−∂βΓ

γ
σα+Γ

ν
βαΓ

γ
σν −Γ

ν
σαΓ

γ
βν ,

i.e.,

F egβσ = η
gchαc h

e
γR
γ
σβα . (17)

The easiest way to find the geometrical counterpart of
G is to apply the geometrizing relations (6) and (8):

hµah
ν
bG
ab
βρσ = h

µ
ah
ν
bDβF

ab
ρσ = δβF

µν
ρσ ;

Fµνρσ = h
µ
ah
ν
bF
ab
ρσ

and use (17). We arrive at

Gabβρσ = h
a
µh
b
νg
ναδβR

µ
σρα , (18)

which is the most natural equation one would expect in
view of the relation (14) between F and G.
By means of the geometrical descriptions (17) and (18),

we are able to find

∂L0

∂F adρσ
=
∂L0

∂Rγλβα

∂Rγλβα
∂F adρσ

=
∂L0

∂Rγσρα
ηbdh

b
αh
γ
a ,

∂L0

∂Gadβρσ
=

∂L
(4)
0

∂
(
δλR

µ
γνα

)
∂
(
δλR

µ
γνα

)

∂Gadβρσ
=

∂L0

∂
(
δβR

µ
σρα

)gαωhµah
ω
d .

With these derivatives, the condition (15) for the gauge
Lagrangian is put in the form

∂L0

∂Rθσρβ

[
δθνgγλ− δ

θ
γgνλ
]
Rλσρβ

+

[
∂L0

∂
(
δβR

γ
σρα

)gνλ−
∂L0

∂
(
δβRνσρα

)gγλ

]
δβR

λ
σρα ≡ 0 .

(19)

This is a fundamental restriction upon the Lagrangians
tentatively proposed for the theory, and it is quite useful in
order to choose a specific suitable invariant.

4 Quadratic Lagrangian counting

Our goal here is to determine all possible independent
quadratic Lagrangians constructed with the field strength
tensors F and G considering their various symmetries. By
quadratic Lagrangians we mean invariants of the type FF
or GG, but not mixed terms like FG (obviously with the
proper contraction of indices). We will also compute the
linear case of the Einstein–Hilbert Lagrangian.

4.1 First order invariants

The symmetries to be considered in the construction of
the invariants of the type FF are those inherited from
F . Thus we have skew-symmetry in each pair of indices:
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F abµν = −F
ba
µν and F

ab
µν = −F

ab
νµ. Besides these, there is an-

other one, which is unveiled by the geometrical form of
F , (17), namely

Rγσβα+R
γ
βασ+R

γ
ασβ ≡ 0 ,

the familiar first Bianchi identity, met with in the context
of the general relativity.
Once algebra and space-time indices can be trans-

formed into each other by means of a tetrad, we will
consider a compact representation for F :

F abµν → F
ab
µνh

µ
c h
ν
d ≡ (abcd) .

Since the Lagrangians are all of the form F 2 with all al-
lowed orders of contractions, it is always possible to rename
dummy indices in such a way that the first F will keep its
indices in alphabetic order. In the table below follow all
available permutations for the second F :

Fix. a Fix. b Fix. c Fix. d

cyclic
(abcd)
(acdb)
(adbc)

(bacd)
(bcda)
(bdac)

(cabd)
(cbda)
(cdab)

(dabc)
(dbca)
(dcab)

non-cyclic
(abdc)
(acbd)
(adcb)

(badc)
(bcad)
(bdca)

(cadb)
(cbad)
(cdba)

(dacb)
(dbac)
(dcba)

(20)

By means of a change in one pair of indices, one can
see that the non-cyclic permutations are all proportional to
the cyclic ones. Considering only the cyclic permutations
and changing two pairs of indices, the table is reduced to

Fix. a Fix. b Fix. c Fix. d

cyclical
(abcd)
(acdb)
(adbc)

−
(bcda)
(bdac)

−
−
(cdab)

−
−
−

The skew-symmetries of the first F (which has been
taken in alphabetic order) leads one to restrict once more
the possible contractions to the three quadratic invariants:

IF1 = (abcd)(abcd) ,

IF2 = (abcd)(acdb) ,

IF3 = (abcd)(cdab) . (21)

We now analyze the invariants constructed with one
trace of F . The only non-null type of trace concerns those
obtained by contracting one index of the first pair with one
index of the second pair, in view of the skew-symmetry of
this object. All possibilities are proportional to

TrF → hνcF
ca
µνh

µ
b ≡ ( ·ab · ) or (◦ab◦ ) .

The quadratic invariants are given by

ITrF1 = ( ·ab · )(◦ab◦ ) ,

ITrF2 = ( ·ab · )(◦ ba◦ ) . (22)

Still, one can construct a linear invariant taking a dou-
ble trace of F :

ITrTrF = hνcF
ca
µνh

µ
a ≡ ( · ◦ ◦ · ) .

4.2 Second order invariants

Let us introduce a notation similar to the one used in the
case of F , i.e.,

Gabβρσ → h
β
c h
ρ
dh
σ
eG
ab
βρσ ≡ [abcde] ,

where we identify the following symmetries:

(i) antisymmetry by permutation of indices in the first
pair and the last,

[abcde] =−[bacde] =−[abced] ;

(ii) the Bianchi identity for the last three indices,

[abcde]+ [abdec]+ [abecd] = 0 .

4.2.1 Invariants of GG kind

The quadratic combinations are now in a larger amount
than in the F 2 case. In fact, we have five tables like (20),
one to each letter labeling, since we can associate

[abcde] = c(abde) .

Using the symmetries cited above, one finds that the 5!
G2 invariants are reduced to just two kinds:

IG1 = [abcde][abcde] ,

IG2 = [abcde][debac] .

The detailed and cumbersome calculations are made in
Appendix A.

4.2.2 Invariants involving traces

There are three independent types of traces for G:

T
(1)
abc = h

β
dG
da
βρσh

ρ
bh
σ
c ≡ [ ·a · bc] ,

T
(2)
abc = h

ρ
dG
da
βρσh

β
b h
σ
c ≡ [ ·ab · c] ,

T
(3)
abc = g

βρGabβρσh
σ
c ≡ [ab · · c] . (23)

Again using symmetries (see Appendix A) we arrive at

TrG3 = [ ·ab · c][ ·a · bc] , TrG11 = [ ·ab · c][ · bc ·a] ,

TrG5 = [ ·ab · c][ · c ·ab] , TrG14 = [ ·ab · c][ ·ab · c] ,

TrG6 = [ab · · c][ ·a · bc] , TrG17 = [ab · · c][ab · · c] ,

TrG10 = [ ·ab · c][ · ba · c] , TrG18 = [ab · · c][ac · · b] ,
(24)

while for double traces we have

TrTrG1 = [ · ◦ b · ◦ ][ · ◦ b · ◦ ] ,

TrTrG2 = [◦ b · · ◦ ][◦ b · · ◦ ] ,

TrTrG3 = [ · ◦ b · ◦ ][◦ b · · ◦ ] . (25)
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4.3 Bianchi identities

As we already said, until now we have not used the first
Bianchi identity:

Rσχρβ+Rχρσβ+Rρσχβ ≡ 0 . (26)

In geometrical variables, the cyclic property of G is
translated to the second Bianchi identity:

δµRσχρβ + δσRχµρβ+ δχRµσρβ ≡ 0 .

These identities reduce the number of independent invari-
ants, since F ∝R andG∝ δR.

4.3.1 Reducing invariants

Let us begin by invariants of form F 2. The first three
are (21)

IF1 =RσρχκR
σρχκ ,

IF2 =RσρχκR
σχρκ ,

IF3 =RσρχκR
χκσρ .

As a consequence of the first Bianchi identity (26) and
the skew-symmetries, the curvature tensor obeys

Rσρχκ =Rχκσρ . (27)

Then

IF3 =RσρχκR
χκσρ =RσρχκR

σρχκ = IF1 ,

while for IF2 one finds

IF2 =RσρχκR
σχρκ =−(Rρχσκ+Rχσρκ)R

σχρκ

=−RχρσκR
χσρκ+RχσρκR

χσρκ

=−IF2 + I
F
1 ,

2IF2 = I
F
1 ,

which leaves us with only one invariant of this kind, IF1 .
Now, we translate the trace-like invariants (22) in a ge-

ometrical form:

ITrF1 =RρρµνR
µνσ
σ ,

ITrF2 =RρρµνR
νµσ
σ .

Since the Ricci tensor Rµν ≡ Rρρµν is symmetric,
2 we have

in fact only one invariant, ITrF1 =RµνR
µν .

At last, the only invariant of double traced form in F
is

ITrTrF =R .

Analogously, in view of the Bianchi identities, only four
invariants of the type G2 remain (see Appendix A):

IG1 = δβRσρχκδ
βRσρχκ , TrTrG2 = δ

ρRρχδµR
µχ ,

TrG10 = δβRσχδ
χRσβ , TrG14 = δβRσχδ

βRσχ .

2 This is a consequence of the first Bianchi identity.

5 Gauge invariance condition

With the invariants constructed above we collect seven
types of Lagrangians for the gravitational field:

Lagr. Inv. Gauge Form Geom. Form

L
(R1)
0 (ITrTrF )n

(
F abba
)n

Rn, n= 1, 2

L
(R2)
0 ITrF1 F abµaF

bµc
c RµνR

µν

L
(R3)
0 IF1 F abµνF

µν
ab RαβρσR

αβρσ

L
(G1)
0 TrTrG2 GβaabβG

cbµ
µc δρRρχδµR

µχ

L
(G2)
0 TrG14 GabµaσG

µcσ
cb δβRσχδ

βRσχ

L
(G3)
0 TrG10 Gabeaσ G

dσ
deb δβRσχδ

χRσβ

L
(G4)
0 IG1 GabµνλG

µνλ
ab δβRσρχκδ

βRσρχκ

(28)

We are considering Lagrangians only up to quadratic
order in F and/or G, which also includes the linear in-
variant ITrTrF = R and the square R2. Actually, one can
observe that if any invariant fulfills the gauge invariance
condition, then any of its powers will, since this condi-
tion is linear in the derivatives ∂L0/∂F and ∂L0/∂G. For
instance,

L0 = I
n ,

∂L0

∂F
= nIn−1

∂I

∂F
.

Therefore,

∂I

∂F
[. . . ]F = 0⇒

∂L0

∂F
[. . . ]F = 0 ,

and the same follows for G.
Using the skew-symmetry ν↔ γ of (19) and the sym-

metry properties of the Riemann tensor, one can easily
verify that all Lagrangian densities listed in (28) accom-
plish the gauge invariance condition. Then, any function of
these invariants expressible in a Taylor series also will fulfill
the gauge invariance condition.

6 Equations of motion

Here we will concentrate our attention on the effect of the
term

L
(G1)
0 =

1

2
hhaσh

ν
cG
βσ
abβG

cbµ
µν =

1

8
hδρRδρR

on a gravitational theory based on the Einstein–Hilbert
action plus the L

(G1)
0 term. This Lagrangian density is

equivalent, by the Bianchi identity, to the form LP =
1
2hδ

ρRρχδµR
µχ, which is clearly analogous to Podol-

sky’s second order term for electrodynamics (LPodolsky ∝
∂ρFρχ∂µF

µχ). The choice of the particular Lagrangian

L
(G1)
0 is mainly motivated by this analogy. Besides this, the

L
(G1)
0 term also can be viewed as a kind of kinetic term
for the scalar curvature, which approximates such a de-
scription to the usual scalar fields. Moreover, this scalar
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is, up to a surface term, present in the Schwinger–DeWitt
renormalized effective action for a scalar field on a curved
background [27]. Therefore, the field theory constructed on

the basis on L
(G1)
0 can be considered an effective gravita-

tional theory.
Taking a functional variation of the tetrad field, one

finds

h=
√
−g , δh=

1

2
hgλνδgλν = hg

λνhaληabδh
b
ν

and

δL
(G1)
0 =

1

4
∂ρ(h∂

ρRδR)−
1

4
δR∂ρ(h∂

ρR)

+
1

4
h

[
1

2
gλν∂ρR∂ρR− g

µνgρλ∂µR∂ρR

]
haληabδh

b
ν .

On calculating the equations of motion, we must give spe-
cial attention to the last term, involving

δR=−2Rµβg
µνgβλhaληabδh

b
ν

+
1

h
∂α
[
h
(
gµνδΓαµν − g

ναδΓ βνβ
)]
,

which will include several integrations by parts. After these
integrations and some cumbersome calculations, one finds

δL
(G1)
0 =

1

2
∂θV

θ+
1

2
h

[
δλδν [〈〉R]+

1

2
δλRδνR−Rλν〈〉R

− gλν〈〉[〈〉R]−
1

4
gλνδ

ρRδρR

]
hλaη

abδhνb ,

where

Vθ ≡−
1

2

(
gµνδΓ θµν − g

νθδΓ βνβ
)
∂ρ(h∂

ρR)−
1

2
h∂θRδR

+
1

4
h(gµνgαβ− gναgµβ)δα[〈〉R]

×
(
δθνδ

λ
µδ
η
β+ δ

θ
µδ
λ
βδ
η
ν − δ

θ
βδ
λ
ν δ
η
µ

)
δgλη ,

and

〈〉 ≡ δβδ
β

is the Laplace–Beltrami operator on the Riemannian
space.
Therefore, the second order contribution to the equa-

tion of motion will be

Hbν ≡ h
bλδλδν [〈〉R]+

1

2
hbλδλRδνR−R

b
ν〈〉R

−hbνδβδ
β [〈〉R]−

1

4
hbνδ

ρRδρR . (29)

Furthermore, if we include the usual first order Einstein–
Hilbert and matter Lagrangian densities,

ST =

∫
dnx

(
−
hR

2χ
−
β

χ
L
(G1)
0 +hLmatter

)
,

the field equations become

Gbν +βH
b
ν = χT

b
ν , (30)

or, in geometrical form,

Rλν −
1

2
gλνR+β

[
δλδν(〈〉R)+

1

2
δλRδνR−Rλν〈〉R

− gλν〈〉(〈〉R)−
1

4
gλνδ

ρRδρR

]
= χTλν ,

where Gbν is the Einstein tensor and

Tλν ≡
2

h

δ(hLmatter)

δgλν

is the energy-momentum tensor of the matter fields written
in terms of the metric field.
By analogy to the Alekseev–Arbuzov–Baikov case [22],

one could expect that the higher order terms, which can be
up to sixth derivative order, would be related to infrared
corrections to general relativity, giving observable physical
effects at large scales.

6.1 Covariant conservation of Tλν

Taking the covariant divergence of (30), we have

δνGνα+βδ
νHνα = χδ

νTνα .

Now, from the first order case, we know that

δνGνα ≡ 0 .

Applying the divergence to (29), one finds

δνHνα = δ
νδνδα〈〉R− gναδ

ν〈〉[〈〉R]+
1

2
δνRδ

νδαR

+
1

2
δνδνRδαR− δ

νRνα〈〉R−Rναδ
ν〈〉R

−
1

4
gναδ

ν
(
δρRδρR

)
.

Using the commutation relation

[δν , δα]A
τ =RτξανAξ

and the second Bianchi identity, we arrive at

δνHνα =Rαξδ
ξ〈〉R−Rναδ

ν〈〉R

+
1

2
δνRδ

νδαR−
1

2
δρRδαδρR

= 0 .

Then the covariant conservation of Tµν is established:

δµ(Gµν +βHµν)≡ 0 =⇒ δ
µTµν = 0 ,

as expected from the coordinate invariance of the La-
grangian density.

6.2 Static isotropic solution

In the case of a static isotropic metric,

ds2 = eν(r)dt2− eλ(r) dr2− r2dθ2− r2 sin2 θdφ2
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in the vacuum, the equations of motion (30) are reduced,
in the linear approximation, to the following coupled linear
equations:

ν′′+
2

r
ν′+β

(
ν(6)+

6

r
ν(5)−

2

r
λ(5)−

2

r2
λ(4)

+
8

r3
λ′′′−

24

r4
λ′′+

48

r5
λ′−

48

r6
λ

)
= 0 ,

1

2

(
λ′

r
−2
λ

r2
+
ν′

r
−ν′′
)

−β

(
ν(6)+

3

r
ν(5)−

12

r2
ν(4)+12

ν′′′

r3
−
2

r
λ(5)

+
4

r2
λ(4)+8

λ′′′

r3
−48

λ′′

r4
+96

λ′

r5
−96

λ

r6

)
= 0 .

To solve this system, we use the Frobenius method, based
on a series expansion:

ν(r) =
∑

n

νnr
s+n , λ(r) =

∑

n

λnr
s+n .

From the first terms in the series, we find s=−1, and the
recursion relations above become

λn+4 =
νn(n−2)

4β(n+4)(n+2)(n+1)
(
n− 12

) ,

νn+4 =−
νn

2β(n+4)(n+3)(n+2)
(
n− 12

) ,

so that the solution can be written as

ν(r) =
3∑

m=0

νmr
m−1

(
1+

∞∑

n=0

cnm

)
,

λ(r) =
3∑

m=0

λmr
m−1

−
3∑

m=0

νmr
m−1

∞∑

n=0

(4n+m−2)(4n+3+m)

2(4n+1+m)
cnm ,

where νm and λm, with m ∈ {0, 1, 2, 3}, are the inte-
gration constants specified by the boundary conditions,
and

cnm ≡

(
−
r4

2β

)n+1
(m+1)!

(4n+m+4)!

×
(4n+m+1)!!!!

(m+1)!!!!

(m− 92 )!!!!(
4n+m− 12

)
!!!!

The notation a!!!! stands for

(a+4)!!!! = (a+4) ·a!!!! .

The convergence of the series, tested by the ratio test,

lim
n→∞

∣
∣∣
∣
νn+1

νn

∣
∣∣
∣=
∣
∣∣
∣
r4

2β

∣
∣∣
∣ limn→∞

∣
∣∣
∣Dn,m

1

(4n+m+7)

∣
∣∣
∣= 0 ,

lim
n→∞

∣
∣
∣∣
λn+1

λn

∣
∣
∣∣

=

∣
∣
∣
∣
r4

2β

∣
∣
∣
∣ limn→∞

∣
∣
∣
∣Dnm

∣
∣
∣
∣

× lim
n→∞

∣∣
∣
∣

(4n+m+2)(4n+m+1)

(4n+m+5)(4n+m+3)(4n+m−2)

∣∣
∣
∣

= 0 ,

Dnm ≡
1

(4n+m+8)(4n+m+6)
(
4n+m+ 72

) ,

shows that both are convergent with an infinite radius of
convergence.
Therefore, in the first order approximation for β, we

have

ν(r) =
ν0

r

(
1+

1

24β
r4
)
+ν1

(
1−

1

60β
r4
)

+ν2r

(
1−

1

360β
r4
)
+ν3r

2

(
1−

1

1050β
r4
)
+O(β2)

λ(r) =−
ν0

r
+λ1+λ2r+λ3r

2

+
1

6β

(
−
ν0

4
r3+

ν1

10
r4+

ν2

60
r5+

ν3

175
r6
)
+O(β2) .

(31)

An analysis of the solution (31) reveals the expected
weak field behavior at short scales, ν0/r, and the devia-
tion from this for the meso-scale, since we are dealing only
with the linear approximation. Correspondingly, we find
ν0 = 2GM/c

2 whereM is the mass of the central body.
The remaining integration constants set scale distances

where modifications of the Newtonian behavior appear.
For instance, consider the Einstein–Hilbert theory with
cosmological constant. The static spherically symmetric
solution is

ν(r) =−λ(r) = 1−
2GM

c2
1

r
−
Λ

3
r2 ,

where the cosmological constant sets a scale distance given
by the de Sitter pseudo-radius.
Analogously, in our case, the ν1 constant sets a con-

stant potential, which can be a mean nonlocal value of
the effective Lagrangian proposed, ν2 sets a scale distance
where a constant mean force appears, and ν3 represents
a gradient of force, in the same way as the cosmological
constant in the example above. A similar reasoning can be
developed for the other constants in the model.
The contribution of each constant to the net force could

be fixed by requiring that it fits the observational data for
the tests of the gravitation. This task deserves a careful
investigation of its own and is presently under investiga-
tion by the authors by means of the study of galaxy rota-
tion curves, geodesic motion, perihelion shift, gravitational
lenses and redshift.



106 R.R. Cuzinatto et al.: Gauge formulation for higher order gravity

7 Conclusion

We have applied second order gauge theory [21] to local
gauge theory for the homogeneous Poincaré group. It was
found that the geometrical counterparts of the usual field
strength F and of the second order field strength G=DF
are the Riemann tensor R and its (space-time) covariant
derivative δR. There followed an analysis of the second
order invariants composed with geometrical entities.
We demonstrate – employing the symmetry properties

of the curvature tensor – that the only independent La-
grangian densities for the gravitational field in a Rieman-
nian manifold of arbitrary dimension are the seven ones
listed in (28). Linear combinations of terms proportional to
powers of R, as the familiar quadratic term in the curva-
ture, are of first order in the gauge potential ω; therefore, in
the context of the second order gauge theory, the contribu-
tions of second order in the Lagrangian density, which are
those including second derivatives of the gauge potential,
are of type δR.
We derived equations ofmotionusing a particularly sim-

ple choice for the second order gauge Lagrangian inspired
in Podolsky’s proposal for generalized electrodynamics.We
found the static isotropic solution of these equations in the
linear approximation, showing that at short distances the
gravitational field behaves exactly as Newton’s law, but
at meso-large distance scales the higher order contribution
dominates, exhibiting amodified potential.
In the future, we will study other solutions of these field

equations, searching for massive modes that do not vio-
late local gauge symmetry. Our guide in these calculations
shall be the treatment given in [21] to the U(1) case, where
an effective mass for the photon was derived. To do this,
one naturally must concern oneself with the determination
of the conserved current associated with the local Lorentz
symmetry and the relationship to the global diffeomorphic
invariance of the theory.
Another perspective is to apply the second order equa-

tions of motion (30) to a Friedmann–Robertson–Walker
metric. The goal is to seek for accelerated regimes of the
cosmological model arising from the higher order terms.
This proposal is now under investigation.
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Appendix: Counting second order invariants

A.1 Counting GG invariants

First, let us analyze how many possible contractions there
are of the kind GG. This is done by means of tables as in

Sect. 4.1. The first one is constructed fixing, for instance,
the last index:

Fix. e Fix. a Fix. b Fix. c Fix. d

cyclic

(abcd)

(acdb)

(adbc)

(bacd)

(bcda)

(bdac)

(cabd)

(cbda)

(cdab)

(dabc)

(dbca)

(dcab)

non-cycl.

(abdc)

(acbd)

(adcb)

(badc)

(bcad)

(bdca)

(cadb)

(cbad)

(cdba)

(dacb)

(dbac)

(dcba)

Analogous tables result when we fix the indices d, c, b
and a. For each table, non-cyclic permutations are equiva-
lent to cyclic ones, giving:

Fix. e Fix. a Fix. b Fix. c Fix. d

cyclic

(abcd)

(acdb)

(adbc)

−
(bcda)

(bdac)

−
−

(cdab)

−
−

−

and similarly for the other four tables.
Using the cyclic permutation symmetry, one can iden-

tify elements of different tables, reducing the number of
invariants. By the skew-symmetry in the first G, and re-
naming dummy indices, there follows

G1 = [abcde][abcde] , G6 = [abcde][cdbea] ,

G2 = [abcde][beacd] , G7 = [abcde][adbec] ,

G3 = [abcde][adceb] , G8 = [abcde][acbde] ,

G4 = [abcde][aecbd] , G9 = [abcde][acdeb] ,

G5 = [abcde][debac] , G10 = [abcde][abdce] .

One can further apply the cyclic permutation symme-
try to the first G in these remaining invariants and reduce
even more the number of independent quantities. Begin-
ning with G10:

G10 =−([abdec]+ [abecd])[abdce] = G1−G10⇒ 2G10 = G1 .

On the other hand, for G9:

G9 =−([abdec]+ [abecd])[acdeb] = 2G4+G9⇒G4 = 0 .

Proceeding in the same way, one finds the following
identities:

2G10 = G1 ; 2G6 = G5 ;

G2 = G3 = G4 = G7 = G8 = G9 = 0 .

which give two independent invariants,

IG1 = [abcde][abcde] , I
G
2 = [abcde][debac] .
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A.2 Counting (TrG)2 invariants

Starting with the three independent traces listed in (23),
and considering the skew-symmetries, the possible quad-
ratic combinations are:

TrG1 = [ ·a · bc][ ·a · bc] , TrG10 = [ ·ab · c][ · ba · c] ,

TrG2 = [ ·a · bc][ · b ·ac] , TrG11 = [ ·ab · c][ · bc ·a] ,

TrG3 = [ ·ab · c][ ·a · bc] , TrG12 = [ ·ab · c][ · ca · b] ,

TrG4 = [ ·ab · c][ · b ·ac] , TrG13 = [ ·ab · c][ · cb ·a] ,

TrG5 = [ ·ab · c][ · c ·ab] , TrG14 = [ ·ab · c][ab · · c] ,

TrG6 = [ab · · c][ ·a · bc] , TrG15 = [ ·ab · c][ac · · b] ,

TrG7 = [ab · · c][ · c ·ab] , TrG16 = [ ·ab · c][bc · ·a] ,

TrG8 = [ ·ab · c][ ·ab · c] , TrG17 = [ab · · c][ab · · c] ,

TrG9 = [ ·ab · c][ ·ac · b] , TrG18 = [ab · · c][ac · · b] .

The last two invariants cannot be converted into any
other ones using the symmetries at our disposal. Each one
of the preceding TrG must be analyzed, case by case, in
a search for an eventual interdependence.
Take, for example, the 16th term, and rewrite it as

TrG16 =−[ ·acb · ][bc · ·a]− [ ·a · cb][bc · ·a]

⇒ 2TrG16 =TrG7 .

Repeat the reasoning for, say, the 15th invariant:

TrG15 =−[ ·acb · ][ac · · b]− [ ·a · cb][ac · · b]

= TrG14−TrG6 .

As soon as we perform this same check for all the above
invariants, only eight of them are kept:

TrG3 = [ ·ab · c][ ·a · bc] , TrG11 = [ ·ab · c][ · bc ·a] ,

TrG5 = [ ·ab · c][ · c ·ab] , TrG14 = [ ·ab · c][ ·ab · c] ,

TrG6 = [ab · · c][ ·a · bc] , TrG17 = [ab · · c][ab · · c] ,

TrG10 = [ ·ab · c][ · ba · c] , TrG18 = [ab · · c][ac · · b] .
(A.1)

A.3 Counting (TrTrG)2 invariants

From T
(1)
abc ≡ [ ·a · bc] one can take a trace again:

T (1)c ≡ [ · ◦ · ◦ c] .

From T
(2)
abc ≡ [ ·ab · c] one finds Tc ≡ [ · ◦ ◦ · c], which can

be reduced to T
(1)
c using the G skew-symmetry in the first

two indexes and changing dummy indexes. Another pos-

sible trace is constructed from T
(2)
abc:

T
(2)
b ≡ [ · ◦ b · ◦] . (A.2)

But it also is not independent of T
(1)
c :

T
(2)
b ≡ [ · ◦ b · ◦ ] =−[ · ◦ · ◦ b]− [ · ◦ ◦ b · ]

=−T
(1)
b − [◦ · ◦ · b] =−2T

(1)
b .

Let us set T
(2)
b as the independent double trace.

There is an internal double trace of T
(3)
abc ≡ [ab · · c],

which is independent of T
(2)
c :

T
(3)
b ≡ [◦ b · · ◦] . (A.3)

The other double trace of T
(3)
abc is

Tb ≡ [b◦ · · ◦] =−T
(3)
b .

Then we have the following set of independent double
traces:

TrTrG1 = [ · ◦ b · ◦ ][ · ◦ b · ◦ ] ,

TrTrG2 = [◦ b · · ◦ ][◦ b · · ◦ ] ,

TrTrG3 = [ · ◦ b · ◦ ][◦ b · · ◦ ] . (A.4)

A.4 Reducing the G2 invariants
using Bianchi identities

Consider the reduction of the number of quadratic invari-
ants in G by means of the Bianchi identities. Using the
geometric form, the first two invariants are

IG1 = δβRσρχκδ
βRσρχκ , IG2 = δβRσρχκδ

χRβκσρ .

Applying the second Bianchi identity to IG2 we have

IG2 =−δβRσρχκ(δ
χRκβρσ+ δβRχκρσ) = IG1 − I

G
2

⇒ 2IG2 = I
G
1 ,

therefore, it is sufficient to consider only IG1 .
Let us analyze now the trace invariants in G, (24):

TrG3 = δβR
ζ
σζχδµR

σβχµ , TrG11 = δβRσχδ
σRχβ ,

TrG5 = δβR
ρ
σρχδµR

βχσµ , TrG14 = δβRσχδ
βRσχ ,

TrG6 = δ
ρRσρχζδκR

σχζκ , TrG17 = δ
ρRσρχκδµR

σµχκ ,

TrG10 = δβRσχδ
χRσβ , TrG18 = δ

ρRσρχκδµR
χµσκ .

Comparing TrG10 with TrG11 one sees that these two are
the same invariant, due to the symmetry of Ricci tensor.
Using the second Bianchi identity, it follows that

TrG3 = δβRσχgµρ(δ
βRρσχµ+ δσRβρχµ) = TrG14−TrG10 ,

and in the same way

TrG5 =TrG6 =−
1

2
TrG17 =−TrG18 =−TrG3 .

This shows that only TrG14 and TrG10 can hold indepen-
dently.
We apply the same technique to the double traced in-

variants (25):

TrTrG1 = δβRδ
βR ,

TrTrG2 = δ
ρRρχδµR

µχ ,

TrTrG3 =−δβRδµR
µβ .
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The second Bianchi identity shows us that we have only
one invariant in such a case:

TrTrG3 = δ
ρ
ζg
σχ
(
δσR

ζ
βρχ+ δρR

ζ
σβχ

)
δµR

µβ

=−2TrTrG2 =−
1

2
TrTrG1 .
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