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Abstract. This work is an application of the second order gauge theory for the Lorentz group, where a de-
scription of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze
the form of the second field strength, G = 0F + fAF, in terms of geometrical variables. All possible in-
dependent Lagrangians constructed with quadratic contractions of F' and quadratic contractions of G are
analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky’s term of
his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation
was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance

modification.

PACS. 11.15.-q; 11.30.Cp; 04.20.Cv; 04.50.+h

1 Introduction

Nowadays there are many proposals to modify gravitation
in order to solve several problems, as the present day accel-
erated expansion of the universe [1-6], or to accommodate
corrections of a quantum nature that arise from the clas-
sical effective backreaction of quantum matter in a curved
background [7—10]. The effective action is widely used in
quantum field theory as a powerful method of calculation.
Podolsky generalized electrodynamics, for instance, can be
viewed as an effective description of the quantum correc-
tion to the classical Maxwell Lagrangian [11-13].

For gravitation, usually higher orders terms are intro-
duced by means of Lagrangian contributions quadratic in
the Riemann tensor and their contractions [14, 15]. This is
inspired by one-loop corrections in the Einstein—Hilbert ac-
tion in the quantized weak field approximation, or in the
equivalent Feynman construction of a spin-2 field on a flat
Minkowski background [16]. Besides this, at the quantum
level, the S matrix for the Einstein theory is finite at one-
loop level but diverges at the two-loop order [17], which
motivates the introduction of derivative terms in the Rie-
mann tensor for the action [18,19].

On the other hand, recently was proposed a second
order construction of gauge theories based on Utiyama’s
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approach [20], which gives exactly the same correction
terms as in Podolsky’s electrodynamics, but now arising
from the principle of local gauge invariance [21]. There-
fore, a connection between quantum corrections and higher
order gauge terms in the action was conjectured, which was
proved be fulfilled also for the effective Alekseev—Arbuzov—
Baikov Lagrangian of the infrared regime of QCD [22].

Here, we analyze the gauge formulation of the gravi-
tational field based on the framework of the second order
gauge theory. The simplest gauge group is given by the
Lorentz homogeneous group in the context of a Rieman-
nian description of the gravitational field. Since the gauge
field is given in such a case by the local spin connection,
a higher order in the gauge field naturally involves the
derivative of the curvature tensor. In this sense, the ac-
tual higher order gravitational Lagrangian should be con-
structed from invariants using the covariant derivative of
the Riemann tensor instead of the usual quadratic terms in
the curvature.

The relationship between the algebraic gauge descrip-
tion and the geometrical one is settled by means of the
introduction of the tetrad field, and the construction of
the covariant derivatives associated with both symmetries:
local Lorentz and global diffeomorphic coordinate trans-
formations. We use Latin indexes, a, b, . . ., for the internal
Lorentz group and Greek indexes for the tangent space of
the space-time manifold.

The paper is structured as follows. In Sect. 2 we re-
view some results relating gauge invariance and gravita-
tion. The field strengths F' and G of the second order treat-



100

ment are introduced in Sect. 3, where they are also written
in their geometrical counterparts: the Riemann curvature
tensor and its covariant derivative.

Section 4 deals with the possible quadratic invariants
of the type F? and G?. All the possible contractions are
studied and only the independent invariants are kept. This
counting is made in the same spirit as the systematic selec-
tion of the independent Riemann monomials done in [23,
24]. In the following section, Sect. 5, these invariants are
shown to satisfy the identity which restricts the theories
that may be called of gauge type.

Among all invariants, we select Lp = %h(SPRchSMR“X,
the Podolsky-like Lagrangian, for calculating the equation
of motion of the gravitational field. This higher order grav-
ity application is done in Sect. 6. For this Lagrangian, we
calculate the static isotropic solution in the linear regime
at Sect. 6.2, finding the regular Newtonian potential at
short scales, but with a modified potential at intermediary
scales.

Final remarks are given in Sect. 7.

2 Gauge interaction and covariance

In 1956 Utiyama [20] has shown how to implement a gauge
description for the gravitational interaction with matter
fields Q“(x) transforming according to

1
0Q*(w) = 5 (@)(Ta) Q"7 , (1)
as an implementation of the local invariance exigency of
the action under continuous proper Lorentz transform-
ations, which are characterized by the generators X, sat-
isfying the operation of a typical Lie group,

L.
[Eabv Ecd] = _fal{;cdzlef7

; )

where the

et = {[Me0s = 1acd5 )05 — [Mbads —naadf )0} —e > f

are the structure constants, obeying the Jacobi identity.
g% = —¢b@ are the parameters of the local transformation.
The capital Latin indexes are for the components of the
matter field.

It was clearly shown that one needs to introduce the
compensating field w(’(z) transforming as a connection,

1 a € Ci (S
2" @) fi cawi + 0 ()

ef _
5wu =1 -

(3)
To ensure the covariance under coordinate transform-

ations it was necessary to define a space-time connection

whose behavior under infinitesimal diffeomorphisms is

0dx” A o5z asz 0?6z
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The invariance of the theory implies that the com-
pensating field must appear through the gauge covariant
derivative

D =0,Q" - S (Tw)hQ®, )

ie.,

1
6D,Q" = 2™ (Zu)4D,Q" )

and the space-time connection must appear through the
space-time covariant derivative,

5#62)\1/ = ayQAU‘FF:/BQ/BU"'F:aQ)\a ’ (6)
and the total covariant derivative:
VuQiV — auQiV _w;izbnkakV +F:aQia . (7)

This total derivative must commute with the mapping to
the tangent space of the manifold,!

QM =n'Q7, QV=hnlQ",
V.Q" =h/'V,.QY

(8)
(9)
where we have introduced the tetrad field h:
hjyhjf‘zély‘, o hlyhj’»’:(S;,
Guv = Nijhy i, Nij = i by G

h=Vdeth), =+v=g.

The definition (9) implies the absolute parallelism of the
tetrad:

V,.hi =0, (10)
which can be solved for the compensating field,
wljﬂ =hy (5uhfx)

or for the space-time connection,

(11)

We will restrict our analysis to a symmetric space-time
connection in order to approach the Riemannian descrip-
tion. The extension to the Riemann—Cartan case is quite
natural, but it would imply different types of invariants as
admissible Lagrangians (see discussion below).

I, =h?(Duhl).

3 Gauge field Lagrangian

The basic hypothesis we will assume is that the La-
grangian for the free gauge potential depends on the

orv = — vo_ — .
po T T gph TR g T A gpa T BA T Grngpe

! Note that the action of the total derivative on a tangent
space field is defined by V, Q" = D, Q".
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field, its first and second order derivatives and Lo =
Lo(wef, 0wt 0,0,we) obeys local invariance under (3).
This enables us to use the results presented elsewhere [21]
to construct a gauge formulation for higher order gravita-
tion theories.

3.1 The field strengths

According to [21], we can re-express

1 0Ly o op 1 9L

i ef
R
1 0L
20 50,0,
2 0(0,0,00)
=0,

splitting it into a set of four hierarchical equations after
substituting (3) and claiming the independence of the pa-
rameters €?® and their derivatives. Three of these func-
tional equations are used to conclude that

0Lg

Lo = Lo(F,G); Dl =0, (12)
where
Fib = 8,05 = 8,0’ — neawpy'wy’ + neawpCwyy  (13)
and
Gy = DFrg = 0555 —npawg o +npaw Fyg . (14)

The remaining hierarchical equation put in terms of the
gauge fields F' and G,

dLo poh

Fad fbc,gh po =0 )

8Gad fbc,gh %pg’ (15)

imposes restrictions upon the functional form eventually
chosen for Ly. Substituting the structure constants, this
condition can be explicitly written as

0Lg o o
8?;;1 [77cg5b - 77bg5c]F55
oL
+ 8Ga3 [77095 nb.‘]é ]G%ia =0 (16)
Bpo

3.2 Geometrical variables

In this section we will show how to interpret all objects and
conditions of the previous sections in terms of a geometri-
cal point of view. From (10) we read

we? =17 (Oohg — Tyahy)

and therefore the field strength F' is written as
Fgg = 7757Ch?hfY [50Fg —0gl)

+FBaF07V_F:ang]7
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where werecognize the expression of the Riemann tensor [26],

— {“)UFAY =0l + 15,17, — 17, ng ,
ie.,
Fgg— gchahiRZﬁa. (17)

The easiest way to find the geometrical counterpart of
G is to apply the geometrizing relations (6) and (8):

RERYGAh, = hiihy D Fet = G Fi s
e = hithF,ff
and use (17). We arrive at
G4y =hihb g *6sRE ., (18)

which is the most natural equation one would expect in
view of the relation (14) between F and G.

By means of the geometrical descriptions (17) and (18),
we are able to find

0Ly _ 9L 8Rzﬁ; = L0ty

OFd — OR),, OFu — ORJpa

Ly LYY 0(6\R:,,) 9L o hE
8Ggia a(ékaYLl’a) 3G%‘;0 8(6/3RUP°‘) e

With these derivatives, the condition (15) for the gauge
Lagrangian is put in the form

oL
8R90 ; (00920 = 85903 R
op
0Ly 0L A
+ 3(6,8Ropa) oA 8(6,8Ro'pa) 9 55RUP04 =0

(19)

This is a fundamental restriction upon the Lagrangians
tentatively proposed for the theory, and it is quite useful in
order to choose a specific suitable invariant,.

4 Quadratic Lagrangian counting

Our goal here is to determine all possible independent
quadratic Lagrangians constructed with the field strength
tensors F' and G considering their various symmetries. By
quadratic Lagrangians we mean invariants of the type F'F’
or GG, but not mixed terms like F'G (obviously with the
proper contraction of indices). We will also compute the
linear case of the Einstein—Hilbert Lagrangian.

4.1 First order invariants

The symmetries to be considered in the construction of
the invariants of the type F'F are those inherited from
F. Thus we have skew-symmetry in each pair of indices:
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F“b —Fb“ and F“b —Fﬂﬁ Besides these, there is an-
other one, Wthh 1s unvelled by the geometrlcal form of

F, (17), namely

R+ Ryo+R,5=0,

aclB —

the familiar first Bianchi identity, met with in the context
of the general relativity.

Once algebra and space-time indices can be trans-
formed into each other by means of a tetrad, we will
consider a compact representation for F:

F3b — FShkh = (abed) .

Since the Lagrangians are all of the form F? with all al-
lowed orders of contractions, it is always possible to rename
dummy indices in such a way that the first F' will keep its
indices in alphabetic order. In the table below follow all
available permutations for the second F':

Fix.a Fix.b Fix.c Fix.d

(abed)  (bacd)  (cabd)  (dabc)

cyclic (acdb)  (bcda)  (cbda)  (dbca)
(adbc)  (bdac) (cdab)  (dcab) (20)

(abdc)  (badc)  (cadb)  (dacb)

non-cyclic  (acbd) (bcad) (cbad) (dbac)

(adeb)  (bdca)  (cdba)  (dcba)

By means of a change in one pair of indices, one can
see that the non-cyclic permutations are all proportional to
the cyclic ones. Considering only the cyclic permutations
and changing two pairs of indices, the table is reduced to

Fix. a Fix. b Fix.c¢ Fix.d

(abed) - _ _
cyclical  (acdb)  (bcda) — —

(adbc)  (bdac)  (cdab) —

The skew-symmetries of the first F' (which has been
taken in alphabetic order) leads one to restrict once more
the possible contractions to the three quadratic invariants:

I = (abed)(abed)
= (abcd)(acdb) ,

I¥ = (abcd)(cdab) . (21)

We now analyze the invariants constructed with one
trace of F'. The only non-null type of trace concerns those
obtained by contracting one index of the first pair with one
index of the second pair, in view of the skew-symmetry of
this object. All possibilities are proportional to

TrF — hYFSohly = (-ab-)or (cabo).

ct pv
The quadratic invariants are given by

(-ab-)(oabo),
(-ab-)(obao).

ITrF _

L= (22)
Still, one can construct a linear invariant taking a dou-
ble trace of F*:

ITrTrF hchah#:(-Oo-),

ct uv'ta
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4.2 Second order invariants

Let us introduce a notation similar to the one used in the
caseof F,i.e.,

G4, — hERGhI G, = [abede]

where we identify the following symmetries:

(i) antisymmetry by permutation of indices in the first
pair and the last,

[abede] = —[bacde] = —[abeed] ;

(ii) the Bianchi identity for the last three indices,
[abede] +

[abdec] + [abecd] = 0.

4.2.1 Invariants of GG kind

The quadratic combinations are now in a larger amount
than in the F? case. In fact, we have five tables like (20),
one to each letter labeling, since we can associate

[abede] = c(abde) .

Using the symmetries cited above, one finds that the 5!
G? invariants are reduced to just two kinds:

IY = [abcde][abede]
I = [abede] [debac] .

The detailed and cumbersome calculations are made in
Appendix A.

4.2.2 Invariants involving traces

There are three independent types of traces for G:

T = hGoe h{he =[-a-bd,
T = h5Gae, hihg =[-ab-d,

T = ¢%° G b7 = [ab- - ]. (23)

Again using symmetries (see Appendix A) we arrive at

TrGs =[-ab-c|[-a-bc], TrGi =[-ab-c|[-bc-a],
TrGs =[-ab-c][-c-ab], TrGiy=[-ab-c][-ab-],
TrGe = [ab- -c][-a-bc], TrGiz =[ab--c]ab- -¢],
TrGio = [-ab-c][-ba-c], TrGis=[ab- -c|[ac--b],
(24)
while for double traces we have
TrTrGy =[-ob-o][- 0b- o],
TrTrGs = [0ob- - o][0b- - o],
TrTrGs = [- ob-o][ob- - o] (25)
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4.3 Bianchi identities

As we already said, until now we have not used the first
Bianchi identity:

ROXPB . RxpoB 4 RroxB = (26)

In geometrical variables, the cyclic property of G is
translated to the second Bianchi identity:

GHROXPS 4 57 R0 4 SXRHTOP =

These identities reduce the number of independent invari-
ants, since F' < R and G < 0 R.

4.3.1 Reducing invariants

Let us begin by invariants of form F2. The first three
are (21)

If = Ry pyn R7PX"

I2F = RGPXRRGXPK )

IF = Ry py RX"P .

As a consequence of the first Bianchi identity (26) and
the skew-symmetries, the curvature tensor obeys

Ro’pxm = Rxmo’p . (27)

Then
I:f = RUPXHRXMP = RGPXRRGPXK = If )
while for I one finds
I2F = RapanUX/m = _(Rpxm + RXUPH)RUXM
= Ry por RX7P" + Ry 5 pr RX7P"
=-Iy+1I{,
2IF =17,

which leaves us with only one invariant of this kind, I¥".

Now, we translate the trace-like invariants (22) in a ge-
ometrical form:

TrF _ pp pnro
Il - Rp;zl/Ro' ’
TrF _ pp Vo
I, =R pWRU .
Since the Ricci tensor R,,, = R?  is symmetric,? we have
22 ng Y )

in fact only one invariant, I{"F = R, R*.
At last, the only invariant of double traced form in F
is
=R,
Analogously, in view of the Bianchi identities, only four

invariants of the type G2 remain (see Appendix A):

IY = 63 Ry 6’ R7PX"
TrGio = 05 Ry OXRP

TrTrGs = 0° R)y 6, R*X
TtGra = 65 R, 0° ROX..

2 Thisis a consequence of the first Bianchi identity.
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5 Gauge invariance condition

With the invariants constructed above we collect seven
types of Lagrangians for the gravitational field:

Lagr. Inv. Gauge Form Geom. Form
L(()Rl) (JTTFyn (Fl?ab)n R" n=1,2
W R R
L(()RS) If FﬁﬁFé‘b” RaﬁpoRaﬂpo
LY TrTeg, Gl Gt 8P R 6, RX
L% TrG1a Groo Gl dpRox 07 ROX
L) TGy GobeGde, 83 Ryy0XRP
g™ It GyiaGay”  0pRopxwd R7X
(28)

We are considering Lagrangians only up to quadratic
order in F' and/or G, which also includes the linear in-
variant IT™"T"F = R and the square R?. Actually, one can
observe that if any invariant fulfills the gauge invariance
condition, then any of its powers will, since this condi-
tion is linear in the derivatives 0Lo/0F and dLy/0G. For
instance,

L 0Ly 0l
L()—I 5 a—F =nl 8_F
Therefore,
oI 0L, B

and the same follows for G.

Using the skew-symmetry v <> v of (19) and the sym-
metry properties of the Riemann tensor, one can easily
verify that all Lagrangian densities listed in (28) accom-
plish the gauge invariance condition. Then, any function of
these invariants expressible in a Taylor series also will fulfill
the gauge invariance condition.

6 Equations of motion

Here we will concentrate our attention on the effect of the
term

G 1 alv o Ci 1
L = Shhh Gl Getn = hd" RO, R
on a gravitational theory based on the Einstein—Hilbert
action plus the L(()Gl) term. This Lagrangian density is
equivalent, by the Bianchi identity, to the form Lp =
1h6P R,y 6, R¥X, which is clearly analogous to Podol-
sky’s second order term for electrodynamics (Lpodolsky o
0PF,,0,F"X). The choice of the particular Lagrangian

0G1) term also can be viewed as a kind of kinetic term

for the scalar curvature, which approximates such a de-
scription to the usual scalar fields. Moreover, this scalar

JASEN mainly motivated by this analogy. Besides this, the
L
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is, up to a surface term, present in the Schwinger-DeWitt
renormalized effective action for a scalar field on a curved
background [27]. Therefore, the field theory constructed on

L(()Gl)

the basis on can be considered an effective gravita-

tional theory.
Taking a functional variation of the tetrad field, one
finds

h=v~g, 5h=%mﬁ%wu:hfWﬂmw%
and
Mf”zi@@WRMa—%R&WWR)
+ih %gwaﬂﬂ%R—gmgﬂ%mRanh%hwhg

On calculating the equations of motion, we must give spe-
cial attention to the last term, involving

0R = —2R,9" g hmar0hl)
1 v (e} ro
+E3a[h(g“ 51“,“,—9 612%)] ,

which will include several integrations by parts. After these
integrations and some cumbersome calculations, one finds

1 1 1
6L(()G1) — Eaeve -+ ih |:5)\51/[<>R] =+ 55)\R51_/R - R}\UOR

1
—gmowm—ngMRﬁRygwwm;

where
1, . . 1
V0=~ (90T, — 9"°01)5)0,(h"R) — 5 hd” ROR
1
+ 09" 9" = g"°g"%)dal ) Bl
X (806,00 + 80030 — 650,07)gxn »
and

) =056"

is the Laplace—Beltrami operator on the Riemannian
space.

Therefore, the second order contribution to the equa-
tion of motion will be

zﬁzh“a@mm+%mwgmﬁ—RMR
—@%WMM—%@MR@R. (29)

Furthermore, if we include the usual first order Einstein—
Hilbert and matter Lagrangian densities,

h
ST:/dnx(__R_éLE)Gl)—i_h['matter)7
2x x

the field equations become

GY +BH. =XT),
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or, in geometrical form,
1 1
Ry, = 593 R+ 80380 () R) + 50x R, R — Ry O R
1
- g)\l/<>(<>R) - nguapRépR = XTAU ;

where G? is the Einstein tensor and

2 5(h£matter)
Ty =—— 7"+
A h 5gAV

is the energy-momentum tensor of the matter fields written
in terms of the metric field.

By analogy to the Alekseev—Arbuzov-Baikov case [22],
one could expect that the higher order terms, which can be
up to sixth derivative order, would be related to infrared
corrections to general relativity, giving observable physical
effects at large scales.

6.1 Covariant conservation of T,
Taking the covariant divergence of (30), we have

0"Gua+B6"Hyo =x0"T1e -
Now, from the first order case, we know that

0"Gua =0.
Applying the divergence to (29), one finds
5 Hya = 80,00 R~ guad” O[O R] + 50, R6 S0 R

+ 208, Ru R~ 8" Rya )R~ Ruad* ) B

20" (R0, R).
Using the commutation relation

[6,,0a] AT = RS A
and the second Bianchi identity, we arrive at
§"Hyo = Rag0® )R — Ry00” )R
+ %6,,1?,5”6&]% — %5”R5a5pR
=0.
Then the covariant conservation of T}, is established:
0* (G +pPH,) =0=§"T,, =0,

as expected from the coordinate invariance of the La-
grangian density.
6.2 Static isotropic solution

In the case of a static isotropic metric,

ds? =e"M dt? —e* dr? —12d6? — r?sin® 0d >
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in the vacuum, the equations of motion (30) are reduced,
in the linear approximation, to the following coupled linear
equations:

V"—|—gl/—|—ﬁ< 6)-|-6y )\(5 2)\(4)
r

24 48
7‘_4AH + 7"_5>\/ - 7"_6>\> —

+ /r_sA/// _
"
T O N O N O ISP )
T r2 s r

)\//l AI/ Al )\
+— )\(4)+8 48 4+96—5—96—6)=0.
’r‘ T T

To solve this system, we use the Frobenius method, based
on a series expansion:

v(r)= g UprStT = g AprSt™
n n

From the first terms in the series, we find s = —1, and the
recursion relations above become

. Un(n—2)
n+4 4B(n+4)(n+2)(n+1)(n—3)’
Vn+4:_2ﬂ<n+4)(n+3§(n+2)(n—%) )

so that the solution can be written as
3 %)
r)= Z V™1 (1 + Z cnm> ,
m=0 n=0
3
r) = Z A
- Z vt Z

(An+m—2)(4n+3+m)
2(4n+1+4m)

cnm ?

where v, and A, with m € {0,1,2,3}, are the inte-
gration constants specified by the boundary conditions,
and

B P\ (m+1)!
C"m:<_ﬁ> (4n+m+4)!
(An+m+1)M  (m—H
(m+ DM (dn+m— Ly

The notation a!!!! stands for

(a+4)M = (a+4)-allll.
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The convergence of the series, tested by the ratio test,

4

r 1

VUn+1

. )\n+l
nlinéo‘ A
4
= || lim ‘Dnm
n—oo
o lim (An+m+2)(dn+m+1)
n—oo | (dn+m+5)(dn+m+3)(dn+m—2)
_O’
1
Dy =

(4n+m+8)(dn+m+6)(dn+m—+1)’

shows that both are convergent with an infinite radius of
convergence.

Therefore, in the first order approximation for 3, we
have

1
4 1— 4 2
+”2T< 360ﬁr>+ s ( 105073 (6°)
)\(7"):—@4‘)\14‘)\27‘4‘)\37‘
1 1% 3 141 4 120] 5 V3 6 2
L N O R P 10
+6ﬁ< 27 T Teo” Tt ) OB

An analysis of the solution (31) reveals the expected
weak field behavior at short scales, vy/r, and the devia-
tion from this for the meso-scale, since we are dealing only
with the linear approximation. Correspondingly, we find
vp = 2GM /c? where M is the mass of the central body.

The remaining integration constants set scale distances
where modifications of the Newtonian behavior appear.
For instance, consider the Einstein—Hilbert theory with
cosmological constant. The static spherically symmetric
solution is

where the cosmological constant sets a scale distance given
by the de Sitter pseudo-radius.

Analogously, in our case, the v; constant sets a con-
stant potential, which can be a mean nonlocal value of
the effective Lagrangian proposed, v, sets a scale distance
where a constant mean force appears, and v3 represents
a gradient of force, in the same way as the cosmological
constant in the example above. A similar reasoning can be
developed for the other constants in the model.

The contribution of each constant to the net force could
be fixed by requiring that it fits the observational data for
the tests of the gravitation. This task deserves a careful
investigation of its own and is presently under investiga-
tion by the authors by means of the study of galaxy rota-
tion curves, geodesic motion, perihelion shift, gravitational
lenses and redshift.
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7 Conclusion

We have applied second order gauge theory [21] to local
gauge theory for the homogeneous Poincaré group. It was
found that the geometrical counterparts of the usual field
strength F' and of the second order field strength G = DF
are the Riemann tensor R and its (space-time) covariant
derivative 0 R. There followed an analysis of the second
order invariants composed with geometrical entities.

We demonstrate — employing the symmetry properties
of the curvature tensor — that the only independent La-
grangian densities for the gravitational field in a Rieman-
nian manifold of arbitrary dimension are the seven ones
listed in (28). Linear combinations of terms proportional to
powers of R, as the familiar quadratic term in the curva-
ture, are of first order in the gauge potential w; therefore, in
the context of the second order gauge theory, the contribu-
tions of second order in the Lagrangian density, which are
those including second derivatives of the gauge potential,
are of type 0 R.

We derived equations of motion using a particularly sim-
ple choice for the second order gauge Lagrangian inspired
in Podolsky’s proposal for generalized electrodynamics. We
found the static isotropic solution of these equations in the
linear approximation, showing that at short distances the
gravitational field behaves exactly as Newton’s law, but
at meso-large distance scales the higher order contribution
dominates, exhibiting a modified potential.

In the future, we will study other solutions of these field
equations, searching for massive modes that do not vio-
late local gauge symmetry. Our guide in these calculations
shall be the treatment given in [21] to the U(1) case, where
an effective mass for the photon was derived. To do this,
one naturally must concern oneself with the determination
of the conserved current associated with the local Lorentz
symmetry and the relationship to the global diffeomorphic
invariance of the theory.

Another perspective is to apply the second order equa-
tions of motion (30) to a Friedmann—Robertson—Walker
metric. The goal is to seek for accelerated regimes of the
cosmological model arising from the higher order terms.
This proposal is now under investigation.
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Appendix: Counting second order invariants

A.1 Counting GG invariants

First, let us analyze how many possible contractions there
are of the kind GG. This is done by means of tables as in
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Sect. 4.1. The first one is constructed fixing, for instance,
the last index:

Fix. e Fix.a Fix.b Fix.c¢ Fix. d
(abed)  (bacd)  (cabd)  (dabe)

cyclic (acdb)  (beda) (cbda)  (dbca)
(adbc)  (bdac)  (cdab)  (dcab)

(abde)  (badc)  (cadb)  (dach)

non-cycl. (acbd) (bcad) (cbad) (dbac)
(adcb)  (bdca)  (cdba)  (dcba)

Analogous tables result when we fix the indices d, ¢, b
and a. For each table, non-cyclic permutations are equiva-
lent to cyclic ones, giving:

Fix.e Fix.a Fix.b Fix.c Fix. d
(abed) - - -

cyclic  (acdb)  (beda) — —
(adbc)  (bdac)  (cdab) -

and similarly for the other four tables.

Using the cyclic permutation symmetry, one can iden-
tify elements of different tables, reducing the number of
invariants. By the skew-symmetry in the first G, and re-
naming dummy indices, there follows

= [abcde][abede] g6 = [abcde][cdbeal ,
= [abcde][beacd] , = [abcde][adbec]
= [abcde][adceb] = [abcde][acbde] ,
= [abcde][aecbd] , = [abcde][acdeb]
= [abcde][debac] glo = [abcde][abdce] .

One can further apply the cyclic permutation symme-
try to the first G in these remaining invariants and reduce
even more the number of independent quantities. Begin-
ning with Gig:

Gio = —([abdec] + [abecd])[abdce] =

G1—Gio=>2G10=01 .

On the other hand, for Gg:

Gy = —([abdec] + [abecd])[acdeb] = 2G4 + Gog = G4 =0

Proceeding in the same way, one finds the following
identities:

2G10 =013
Go =03 =

2G6 =Gs;
Gi=0G7r=Gs=Gyg=0

which give two independent invariants,

I¢ = [abede][abede], IS = [abede] [debac] .



R.R. Cuzinatto et al.: Gauge formulation for higher order gravity

A.2 Counting (TrG)? invariants

Starting with the three independent traces listed in (23),
and considering the skew-symmetries, the possible quad-
ratic combinations are:

TrGy =[-a-bc|[-a-bc], TrGyo=[-ab-c|[-ba-],
TrGo =[-a-bc|[-b-ac], TrGi =[-ab-c|[-bc-a],
TrGs =[-ab-c|[-a-bc], TrGia=][-ab-c|[-ca-b],
TrGy =[-ab-c][-b-ac], TrGiz=[-ab-c|[-¢cb-a],
TrGs =[-ab-c|][-c-ab], TrGia=[-ab-c][ab- -],
TrGe = [ab- -¢|[-a-bc], TrGi5 =|[-ab-c]ac--b],
TrGr = [ab- -¢][-c-ab], TrGis=][-ab-c|[bc- -a],
TrGs = [-ab-c|[-ab-c], TrGi7 =][ab- -c][ab- -],
TrGo = [-ab-c|[-ac-b], TrGig=[ab- -c]lac--b].

The last two invariants cannot be converted into any
other ones using the symmetries at our disposal. Each one
of the preceding TrG must be analyzed, case by case, in
a search for an eventual interdependence.

Take, for example, the 16th term, and rewrite it as

TrGig = —[-acb-][bc- -a] —
= 2TrGis = TrGy .

[-a-cb][be- - a)

Repeat the reasoning for, say, the 15th invariant:

TrGis = —[-acb-]ac- -b] —[-a-cb][ac- - b]

=TrG14 — TrGs .

As soon as we perform this same check for all the above
invariants, only eight of them are kept:

TrGs =[-ab-c][-a-bc], TrGy; =] ab-c|[-bc-a],
TrGs =[-ab-c][-c-ab], TrGiy=][-ab-c|[-ab-],
TrGs = [ab- -c][-a-be], TrGiz=[ab- -c]lab- -],
TrGio=[-ab-c][-ba-c], TrGig=lab--c|[ac--b].
(A1)
A.3 Counting (TrTrG)? invariants
From T(Ebz = [-a-bc] one can take a trace again:

TV =[-0-o0d.

From Téb) =[-ab- ] one finds T,
be reduced to TV using the G skew-symmetry in the first
two indexes and changing dummy indexes. Another pos-

sible trace is constructed from Tiii

=[: o o -], which can

T® =] 0b-o]. (A.2)

But it also is not independent of T(l)

T® = ob-o]=
1o o t)=

—[-0-0b]—[-00b-]
o1V
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Let us set T( ) as the independent double trace.

There is an internal double trace of TC) = [ab- -],

abc
which is independent of T(z)

T, = [ob- -]
The other double trace of T(Egz is
Ty =[bo- o] =-T.

Then we have the following set of independent double
traces:

TrTrGy =[-ob-o][- 0b- o],
TrTrGs = [0b- - o][0b- - o],
TrTrGs =[- ob-o][ob- - o]. (A4)

A.4 Reducing the G? invariants
using Bianchi identities

Consider the reduction of the number of quadratic invari-
ants in G by means of the Bianchi identities. Using the
geometric form, the first two invariants are

IY = 63 Ry’ R7PX* | 1§ =65 R pyn6XR™P.

Applying the second Bianchi identity to IS we have
IS = 05 Ry (BXRA9P7 4 P RX97) =
=2I§ =IY,

If - I3

therefore, it is sufficient to consider only 1.

Let us analyze now the trace invariants in G, (24):
TiGs = 63R; ., 6, R7PH
TrGs = 0 RS, 6, RPX7H
TrGs = 6° Ry pyc 0 RIXEF

TrGio = 05 Roy 0XR77

TrGi1 = 0 R,y 07 RXP
TrGiy = 3R,y 0P ROX
TrGi7 = 0° Ro pyn 0, R7HX™
TrGig = 0° Ro pyr 0, X7 .
Comparing TrG;o with TrG;; one sees that these two are

the same invariant, due to the symmetry of Ricci tensor.
Using the second Bianchi identity, it follows that

TtGs = 65 Ry gup(8° RP7XH 67 RPPXIY = Tr Gy — Tr Gy,

and in the same way

1
TrGs = TrGs = —ETTQN = —TrGig = —TrG3.

This shows that only TrGy4 and TrGyy can hold indepen-
dently.

We apply the same technique to the double traced in-
variants (25):

Tr'TrG, = 6 RS’ R,
TrTrGs = 0P Rpy 6, R*X
TrTrGs = —63R6, R** .
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The second Bianchi identity shows us that we have only

on

e invariant in such a case:
TrTeGy = 52 97 (50Rgpx + 5PR§,BX) 5MRMﬁ
1
= -2TrTrGs = —§TrTrgl .
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